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Abstract— Visual-inertial odometry (VIO), which fuses noisy
inertial readings and camera measurements to provide 3D mo-
tion tracking, is a foundational component in many autonomous
applications. With the increasing use of next-generation edge
devices (e.g., AR/VR devices, nano drones, and mobile robotics)
that are constrained by limited power, resources, and multi-
tasking demands, balancing computational efficiency and ac-
curacy in VIO estimators has become more critical than ever.
Historically, state estimation algorithms have been developed
using either optimization or filtering-based methods, with the
key distinction being the ability to relinearize measurements
and correct state estimates iteratively. It has been widely
claimed that iterative methods improve accuracy by allowing
for the reduction of error through relinearization at a higher
computational demand. Conversely, filtering methods are more
efficient but may suffer from significant linearization errors.
However, these trade-offs have not been thoroughly examined
in the context of visual-inertial motion tracking. In this paper,
we conduct the first comprehensive study on the impact of
iterative algorithms in sliding-window VIO. We analyze the
relinearization of IMU and camera measurements separately,
providing insights into how each affects system performance.
By considering key factors such as system observability and
measurement processes, we offer a deeper understanding of
VIO estimator behavior. Our findings, backed by real-world
tests, offer practical guidelines for balancing accuracy and
efficiency, helping practitioners determine when to prioritize
iterative methods or simpler filtering approaches while encour-
aging researchers and engineers to rethink VIO design for
optimal resource allocation.

I. INTRODUCTION

Visual-inertial navigation systems (VINS) combine inertial
readings and camera data to track 3D motion, forming a crit-
ical backbone for autonomous systems and next-generation
devices [I]-[5]. Historically, VINS estimator development
has been driven by two main approaches: optimization and
filtering-based methods. The primary distinction between
these approaches is the ability to relinearize nonlinear mea-
surements to correct the state iteratively. There are also
partial-iteration approaches, such as iterative Kalman filters,
relinearize only a subset of the measurements. It is widely
claimed that iterative methods offer better accuracy by re-
ducing errors through relinearization at the cost of higher
computational demands. Filter-based methods are more effi-
cient but may have large linearization errors.

Unfortunately, these trade-offs have not been thoroughly
evaluated. For next-generation edge devices—operating un-
der strict constraints on processing power, memory, and
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energy resources while managing multiple tasks simultane-
ously—it is essential to determine when iterative methods
are necessary and when simpler filtering approaches suffice
to optimize VIO algorithms for robust performance without
overloading the system’s computational capacity. In this
work, we aim to bridge this gap. We focus on the VIO
problem, where estimation is conducted over a fixed-size
sliding window of recent poses, by marginalizing past states
and measurements—without incorporating long-term loop
closures and global maps. We will explore the impact of
re-linearizing IMU and visual measurements on estimation
performance while considering the observability properties of
the estimator. Our work encourages the community to rethink
VIO estimator design by emphasizing the balance between
accuracy and computational efficiency, providing insights,
and offering practical guidance for resource-constrained en-
vironments. In summary, our main contribution includes:

« We present the first comprehensive study on the impact
of iterative algorithms in sliding-window VIO, analyz-
ing IMU and camera measurement relinearization to
demonstrate how each influences system performance,
supported by proof-of-concept real-world tests.

e Our study incorporates key factors such as system
observability and measurement processes, providing a
deeper understanding of VIO estimator behavior.

« We provide practical guidelines and valuable insights
on when to prioritize accuracy over computational effi-
ciency in the application of iterative algorithms.

II. RELATED WORK

Inertial navigation systems (INS) have long been pivotal in
estimating 6DOF poses in GPS-denied environments using
low-cost, lightweight IMUs. While it provides high-accuracy
localization, they are prone to noise and bias, necessitating
the integration of cameras to provide visual information.
One of the earliest and most successful filter-based VINS
algorithms is the Multi-State Constrained Kalman Filter
(MSCKEF) [6]. Instead of adding a large number of detected
features directly to the state vector, MSCKF projects visual
bearing measurements onto the null space of the feature
Jacobian matrix, preserving only the motion constraints rel-
evant to the cloned camera poses [7], reduces computational
complexity while maintaining essential information. It has
also been extended to the iterative algorithm, which allows
for the relinearization of camera measurements [8]-[11].
Filter-based VINS estimators often suffer from inconsistency
due to spurious information gain in unobservable direc-
tions caused by linearization. To address this issue, several
“observability-aware” approaches have been proposed [12]-
[15], with the First-Estimates Jacobian (FEJ) technique [16]—



[18] gaining popularity for its simplicity and significant
performance improvements. The full optimization method,
which formulates a nonlinear least-squares (NLS) problem
by using all available measurements and relinearizing them
to estimate the entire state history, is generally expected to
achieve the highest accuracy. However, the computational
burden grows high as the trajectory and the map grow
over time. Especially when incorporating high-rate IMU
readings into the optimization framework, it requires the re-
integration of high-rate readings between consecutive frames
in the local window and highly increases the computational
demand. Therefore, the pre-integration theory is introduced
to formulate the relative motion constraints between frames
and avoid repeated integration to save computation [19]-[23].
Another widely used technique is state marginalization [23]—
[26], which reduces the state size while preserving key
information. This is done by selectively marginalizing and
permanently fixed certain states and computing a correspond-
ing prior for the remaining states. Similar to filter-based
systems, marginalization introduces inconsistencies and leads
to the erroneous belief that it has gained information in un-
measurable directions, resulting in overconfident estimates.
The FEJ method has also been applied to mitigate these
issues and has demonstrated improved performance [27],
[28]. Strasdat et al. [29] analyzed the trade-offs between fil-
tering and BA but focused solely on visual SLAM. However,
the combination of inertial and camera sensing can lead to
significantly different performance outcomes, as IMU data
provides essential metric and dynamic motion information,
offering more accurate initial guesses for the NLS problem.
More recently, [30] introduced a theoretical framework that
clarifies the connections and distinctions among various
estimators. To the best of the authors’ knowledge, no com-
prehensive study has thoroughly compared and investigated
the differences and relationships between filter-based and
iterative algorithms across varying contexts.

III. PROBLEM STATEMENT

We formulate the estimation problem over the entire
trajectory until the current time ¢, with batch least squares.
The system state consists of the current navigation states,
X, and 3D features, x;:
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where L is the unit quaternion that represents the rotation
LR from the global frame {G} to the IMU frame {I};
Gp; and “v; are the IMU position and velocity in {G}, b,
and b, are the gyroscope and accelerometer biases, and the
feature state, x s, comprises the global position of landmarks.

At timestep tj, the batch maximum a posteriori (MAP)
seeks to solve for the history of the state estimate xg.; by
maximizing the posterior PDF leveraging: 1) prior informa-
tion NV (X, Py), 2) IMU motion constraints u, and 3) camera
observation measurements z:
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where the set 2., denotes all measurements between [tg, t1].
Under the Gaussian distribution assumption, maximizing the
above PDF is equivalent to minimizing:
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where we define the following nonlinear cost terms:
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Note that the cost can be formulated in various ways. For in-
stance, IMU readings can be expressed directly between two
IMU states, or they can be formulated using preintegration
as a relative motion constraint to avoid recomputation when
the linearization point changes. The state and error states can
also be represented with different formulations [15].

IV. ESTIMATION ALGORITHMS

The estimation problem is typically represented as a factor
graph [see Figure 1], where state variables are depicted as
circles (nodes) and measurements are represented as edges
connecting related states. In the following sections, we will
discuss the key aspects of the VIO estimator.

A. Optimization vs. Filtering-based Estimators

With a slight abuse of notation, let the current linearization
point for this problem be denoted as X = X5, X7, x5, £°].
1) Full-BA (BA) : The full optimization utilizes all mea-
surements to formulate the nonlinear least squares problem
with the cost we introduced in the previous section and solves
iteratively. Specifically, given the [-th iteration with lineariza-

tion point X!, for each iteration we have the linearized cost:

2
1 1
Cp(dx) :§||5Xé —rollp, + B Z ||®L0x" — 11, [|w,
k=1

3
+ % > IHLox! + H 6 — R, (D)
m=1
where r;, and r,, are residuals for IMU and camera cost,
@}, denotes the Jaocbians for IMU cost. H.,, and H; are the
Jacobians for camera measurements. Minimizing the above
cost, 0x' is computed to update the state estimate:

=B ox (8)

The updated state X® < x!*1 will be set once converge or
reach the maximum number of iterations at [+ 1’th iteration.
2) Iterative Filtering (IF): In the iterative filter-based
method (e.g., an iterative Kalman filter), the state is prop-
agated using inertial readings, with iterative updates per-
formed to relinearize the camera measurements. This process
can be visualized in a simplified graph, as shown in Figure 1,
middle. Specifically, the nonlinear IMU cost is linearized at
the state estimate X, creating a new prior factor ‘p; as:
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Fig. 1: Example graph for full-BA optimizer (left), iterative filter-based estimator (middle) and filter-based estimator (right).

where @? denotes the IMU measurement Jacobian linearized
with initial state X°. With this linearized prior factor (cost),
and the nonlinear camera measurements, the new cost given
the [-th iteration with linearization point X! is:

3
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Similarly, minimizing the above cost, 6x' is computed to
update for the new state estimate with Eq. (8).

3) Filtering (F): Finally, filter-based methods (Figure I,
right) linearize all measurements only once and end with a
new prior connect to all the states:
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where HS and r?, are obtained by nullspace projection [6].
With all Jacobians computed with respect to x©, the new
state is computed from a single update:

xP = %% 4+ 0x (10)

Specifically, only the linearization point—typically obtained
through feature triangulation—is used to compute the mea-
surement Jacobian, while the feature mean is not updated.

B. Marginalization, Consistency, and FEJ

Different strategies are used to manage state and feature
size to enable real-time VIO [27], [31]. In this work, we
focus on the sliding-window method, which keeps recent
IMU states while removing older ones. We adopt the com-
mon approach of marginalizing a feature when its connected
IMU state is removed from the sliding window [27], similar
to the MSCKEF feature in filter-based methods. For example,
in Figure 2, assume the sliding window size is 3, when x3
is added, xo is to be marginalized, the associated feature
f; is also removed. This approach is widely used in both
filter-based and optimization frameworks.

VINS have been shown to suffer from inconsistency
issues related to system observability, linearization, and state

Fig. 2: Example of the marginalization and FEJ process, pink
nodes indicating where linearization points are fixed.

Fig. 3: Example graph illustrating the sequential (left) and
batch (right) methods, with a sliding window size of 3.

marginalization in both optimization and filter-based estima-
tors [27]. These can be addressed using the First-Estimates
Jacobian (FEJ) method, which fixes the state linearization
point during Jacobian evaluation. In short, states connected
to a prior factor must have their linearization points fixed
during Jacobian evaluation. For instance, in Figure 2, when
xg and fj are marginalized, the new prior factor p; connects
to x; and xo, thus these two states are being fixed, shown
in pink in the Figure. More details refer to our previous
works [3]. In comparison with full BA, iterative filters, and
filter-based methods, FEJ states are also represented as pink
nodes in Figure 1. In full BA, only the states connected to
the prior need to be fixed. In iterative filters, since IMU
measurements are used to propagate the state only once
and are not relinearized, the corresponding IMU states are
fixed during the iterative update process. Simiarly, in the
filter, as features are used only once and never updated,
their triangulation values are treated as FEJ values. The
propagated IMU states, rather than the updated one, will be
used to compute Jacobian [18]. It is important to clarify that
the states are fixed only when evaluating the Jacobian; the
state corrections (i.e., dx) will still be computed and the state
estimates will be updated accordingly.

C. Batch vs. Sequential Measurement Processing

Even though the states remain the same, there are two
common methods for processing measurements. The first,
known as the sequential method, corrects the states as soon
as measurements become available. In contrast, the batch
method waits until the measurements span the entire sliding
window before using them for state estimation. Figure 3
illustrates this process with the sliding window of size 3.
Specifically, the sequential method (left) will use all mea-
surements for f; and f; to perform state estimate but ignores
those for f3 because there is not enough data to triangulate its
3D position. In the batch method (right), the measurements
for f; are not processed yet, as they do not span the
oldest pose (to be marginalized pose), which will not incur
information loss if not processed immediately. However,
the measurements for f; have measurement at the to-be-
marginalized pose; if not processed, this measurement will
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Fig. 4: Orientation (left) and position error (right) for different estimators and parameters. The darker the color the error is
larger. Darker colors indicate larger errors. This figure illustrates the error trend in estimation performance; detailed results

can be found in [32].

TABLE I: Estimator configurations

Relinearize  Full-BA (BA) Iterative Filter (IF)  Filter (F)
IMU mea. X X
CAM mea. X

be dropped. Note that this distinction refers only to which
measurements are used, and different estimators (e.g., filters
or BA) can still be employed to solve the problem. Sequential
updates allow more updates at the cost of extra computation,
which might be able to minimize the chance when there is no
feature to update. Batch update has the advantage of getting
enough parallax for good feature triangulation and better
efficiency, but it might encounter issues when the estimator
runs out of features for update.

V. EXPERIMENTS

We develop an iterative estimation system to support
filter (F), iterative filter (IF), and full optimization (BA)
approaches, all with and without the FEJ method applied.
Specifically, we begin by modifying the estimator from an
Extended Kalman Filter (EKF) to a square-root inverse filter
(SRIF). Inspired by [30], we perform QR-based marginal-
ization as state information (SI) update to maintain upper-
triangular square-root marginalized prior, and all the other
measurements are processed as state-only (SO) update with
a QR-based decomposition together with square-root prior
for state update. During SO update, the measurements can
be relinearized, and the state can be updated iteratively,
which is equivalent to the optimization-based approach. To
efficiently incorporate IMU readings, we utilize CPI [21]
to compute Jacobians for preintegration measurements. We
also applied the Levenberg-Marquardt approach and Huber
loss in the iterative solver to ensure a robust nonlinearization
optimizaiton. Table I summarize the key different for each of
them for the convenience of the reader. We leverage Open-
VINS [33] to simulate a realistic indoor dataset with visual
bearings and inertial measurements, with details available
in the supplementary material [32] and report the Absolute
Trajectory Error (ATE) for each method. We maintain a
sliding window of IMU states, marginalizing the oldest state
at each time step. Features are marginalized when their
associated IMU states are removed from the window as
described in Section I'V-B. All the reported results are based
on 50 Monte-Carlo runs.

A. Parameter Sensitivity Analysis in Standard Cases

We first evaluate the performance of each algorithm under
standard conditions, varying key parameters. Specifically, we
test different sliding window sizes from 10 to 20, and the
number of feature points from 50 to 200. Additionally, we
adjust IMU noise levels by applying different scaling factors
(i.e., IMU ratios) to either inflate or deflate the original
noise. Lastly, we test with different camera pixel noise levels,
ranging from 1 to 5 pixels. The results are presented in
Figure 4, where the estimation errors for both orientation
and position are color-coded for each algorithm. Due to the
space constraints, more detailed results can be found in [32].

From these results, several key observations can be made.
First, as the number of clones and feature points increases,
estimation accuracy improves due to the added constraints
within each window. We then compare the performance
of iterative and non-iterative algorithms. Interestingly, in
most cases, the difference between iterative and non-iterative
methods is minimal. When IMU and camera noise levels are
unrealistically large (e.g., 5 pixels), iterative methods begin
to show improvement though the noise conditions in these
scenarios are unlikely to occur in practical applications. We
then examine the performance of the FEJ. In most cases, their
performance is similar, likely due to the minimal difference
between the first and current state estimates, as there are no
long-tracked SLAM features. This aligns with the findings
from our previous work [27].

B. Challenging but Practical Cases

We now explore several challenging real-world scenarios
to assess the performance of each algorithm and analyze
the impact of iteration. In the following section, different
colors are used to represent FEJ (pink) and no-FEJ (blue)
estimators, with darker shades indicating more measurements
being relinearized (e.g., dark blue for full-BA and light blue
for filter), an example can be found in Figure 5.

1) Lose Feature Tracks: In real-world mobile robotics,
losing camera features is common in challenging conditions
like featureless or dynamic environments, high motion blur,
temporary obstructions, or sudden lighting changes during
indoor-outdoor transitions. Fortunately, IMU readings can
help to prevent the system from immediate failure. To
demonstrate this, we simulate cases where the system relies
solely on IMU data for a specific duration. The results are
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TABLE II: Average ATE for various estimators across differ-
ent levels of camera noise and feature processing methods.

Noise Sequential Batch
pix. Method (deg/m) (deg/m)
F-FEJ 1.47770.469 1.152/0.357
IF-FEJ]  1.468/0.429 1.132/0.344
3 BA-FEJ  1.420/0.454 1.122/0.348
F 1.390 / 0.394  1.441/0.354
IF 1.385/0.392  1.210/ 0.340
BA 1.375/0.393  1.198 / 0.338

shown in Figure 5 (left), with the x-axis representing the time
without feature updates. The results clearly demonstrate that
iteration significantly enhances accuracy, especially when the
camera cannot detect features for extended periods (e.g., 20
seconds). This is likely due to significant IMU drift during
periods without camera tracking, where a single iteration is
insufficient to correct the accumulated errors. Additionally,
IF and BA show similar performance, indicating that in
this context, relinearizing camera measurements has a more
significant impact than relinearizing IMU data. In comparing
FEJ and non-FEJ estimators, we observe that FEJ-based
estimators perform worse than their non-FEJ counterparts.
Similar to the previous example where IMU noise was high,
the error from IMU pose dominates performance. This is
further evidenced by the fact that BA-FEJ performs worse
than IF-FEJ.

2) Inaccurate System Initialization: Successful operation
of VINS typically requires good initial conditions. While
extensive work has addressed the initialization problem,
low-excitation scenarios can still pose challenges, leading
to inaccurate initial conditions [5], [34]. We thus conduct
simulations where the initial states are perturbed from the
simulated ground truth and evaluate the performance of each
algorithm. Due to space constraints, Figure 5, middle and
right, show the estimation orientation and position error
with perturbed initial orientation and initial velocity; more
complete results are referred to [32]. Starting with the middle
figure, which shows results for perturbed initial orientation,
we observe that F-FEJ performs worse than F, likely due
to the incorrect initial conditions. In contrast, IF-FEJ shows
significant improvement over F-FEJ, indicating the benefit of
iterative updates in this case. Finally, the BA methods, while
computationally more demanding, show that BA-FEJ offers
only limited improvement over IF-FEJ, consistent with our
earlier observations that relinearizing inertial measurements
does not yield substantial gains. Next, we examine the results
of perturbing the initial velocity. Minor errors have little im-
pact, but larger errors (1 m/s) show significant improvement
with iteration. IF and BA also show minimal differences.
To further clarify these findings, we report the convergence
rates for FEJ-based estimators, as shown in Figure 6. While
IF and BA eventually achieve similar error reductions, full-
BA demonstrates a faster convergence rate. As seen, full-BA
reduces errors quickly within just a few iterations, whereas
IF requires more iterations to reach convergence.

C. Sequential vs. Batch Measurement Processing

Next, we evaluate different feature measurement pro-
cessing methods as discussed in Section IV-C. Results are
reported in Table II. Similar to earlier findings, in standard
cases, iterative and non-iterative methods show comparable
performance. Interestingly, the sequential method demon-
strates worse performance, likely because it uses fewer
measurements to triangulate features, leading to less accurate
linearization points and degraded estimation performance. It
is also worth noting that the sequential method imposes a
higher computational burden than the batch method, as the



TABLE III: Average ATE in degrees/meters. VINS-Mono(1) indicates the estimator is modified to a single iteration.

Algo. V101 V102 V103 V201 V202 V203 MHO01 MHO02 MHO03 MH04 MHO05
VINS-Mono 0.82/0.07 274/0.10 5.15/0.15 213/009 257/013 343/029 0.78/020 0.86/0.18 184/022 251/041 0.94/0.29
VINS-Mono(1) 0.84/0.07 278/0.10 495/0.17 192/0.08 249/0.13 340/030 0.76/021 099/0.19 1.82/022 200/042 091/0.28

same measurements are relinearized multiple times compared
to BA. Additionally, when the FEJ method is used, its
performance is highly dependent on the accuracy of the
initial state estimates (i.e., feature triangulation). If these
initial values are inaccurate, the performance of the FEJ
estimator can degrade.

D. Real-world Test

As a proof-of-concept experiment, we employ VINS-
Mono [23], a widely-used open-source optimization-based
VINS system that leverages the Ceres Solver [35], to evaluate
its performance on the EurocMAV dataset. We use the
Levenberg-Marquardt solver with an initial trust region to
1e8 for proper convergence and allow only 1 maximal
iteration in the open-source codebase, which is easily repro-
ducible. The results of the modified code and the original
code are reported in Table III, showing a single iteration
demonstrates remarkably strong performance compared to
multiple iterations in this indoor and standard dataset, con-
sistent with our findings in the simulation.

VI. ITERATION OR NOT: A DISCUSSION

It is important to highlight that our study is centered
on a straightforward yet essential configuration—sliding-
window VIO, a common approach for 3D motion tracking.
We also acknowledge that testing every estimator under
all potential conditions is unrealistic, especially given the
unpredictable nature of real-world systems. Nonetheless, our
experiments and findings are intended to offer meaningful
insights, prompting the community to reconsider algorithm
design on resource-constrained edge devices.

A. Filter May Be Enough for Most Common Cases

Based on our extensive analysis, we found that under
practical and realistic conditions, iterative methods provide
minimal improvement over standard filtering approaches.
This is largely because, within the short sliding window used
in VIO, both inertial and camera measurements offer only
relative constraints. Without global information like GPS,
maps, or loop closures, relinearizing nonlinear measurements
does little to reduce errors effectively. In filtering-based
VIO, high-frequency inertial readings first propagate IMU
states, which are then treated as accurate to form a linear
system for feature triangulation. Since the linear solution is
nearly optimal, a single update is typically sufficient in most
scenarios. In other words, the drift caused by the relative
nature of VIO sensing is difficult to significantly reduce by
performing iterative updates.

B. Good Initials are Important for Filter

In our analysis, we identified three key scenarios where
filter-based estimators struggle, all tied to the same root:
poor initial state estimates. In Section V-B, we show the
case with a lost feature track and perturb the initial states;

both cases will cause IMU states to be inaccurate for filter
update. In these cases, incorrect initial states lead directly
to estimation errors without iteration, as only one update is
not sufficient for good convergence. Section V-B emphasizes
the importance of accurate feature initialization in enhanc-
ing performance—even with fewer updates, accurate initial
values consistently outperform less reliable ones. Moreover,
when the FEJ method is used to ensure system consistency,
the initial values (or FEJ values) become even more critical.
If the initial values are highly inaccurate, the FEJ can actually
degrade performance. Thus, we recommend focusing on the
quality of initial values, which may be even more crucial
than repeatedly relinearizing measurements.

C. Iteration Can Help!

Unfortunately, in real-world scenarios, systems often face
challenges, and good initial conditions are not always guar-
anteed. In such cases, iteration has been shown to improve
performance. For instance, while accurately initializing the
system can be challenging, iterative updates when the system
is just initalized can enhance robustness to poor initial con-
ditions. Moreover, although relinearizing only partial mea-
surements (e.g., camera measurements) effectively reduces
error, enabling full-BA can speed up convergence.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented a comprehensive study
on the impact of iterative algorithms in sliding-window
VIO, focusing on the relinearization of IMU and camera
measurements. We compare the performance of full-BA,
iterative filter, and filter algorithms in both standard simula-
tion scenarios and challenging but practical examples, such
as lost feature measurements during a time and bad initial
conditions to evaluate the impact of iteration algorithms
for different measurements. In our study, we also compare
and discuss key factors such as system observability and
measurement processes, we provided a deeper understanding
of VIO estimator behavior, offering valuable insights to guide
the design and optimization of VIO systems. Our real-world
validation through open-sourced systems reinforces the prac-
tical relevance of these findings, helping practitioners make
informed decisions about when to prioritize iterative methods
or simpler filtering approaches. Ultimately, this work encour-
ages a rethinking of VIO design for resource-constrained
platforms, where balancing computational efficiency and
accuracy is crucial for achieving robust performance. In the
future, we will extend our analysis to visual SLAM with
delayed measurements and loop closure. Additionally, we
plan to incorporate SLAM features and explore methods for
establishing safety checks to enable iterative refinements,
aiming to balance accuracy and computational efficiency
more effectively.
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