
Visual-Inertial State Estimation with
Decoupled Error and State Representations

Chuchu Chen∗, Yuxiang Peng∗, and Guoquan Huang

University of Delaware, Newark, DE 19706, USA ‡ §

Abstract. In this paper, we advocate the Decoupled Error and State
(DES) methodology for state estimation, which uses distinct represen-
tations for error and state estimates and updates the state through tai-
lored functions based on the selected representations. Focusing on Visual-
Inertial Navigation Systems (VINS), for the first time, we analytically
discover the connections between the prominent VINS estimators, offer-
ing a unified view and insightful understanding of the SOTA algorithms.
Building upon this discovery along with the proposed DES idea, we fur-
ther develop the DES-VINS. The proposed estimator adopts a global-
centric state to naturally represent the physical quantities concerned by
the underlying navigation system, while designing a new error represen-
tation by lifting orientation to mitigate the issues caused by lineariza-
tion and ensure proper observability properties. Interestingly, despite
not being constrained by the Lie-group affine properties (which are often
challenging to ensure in practice), the DES-VINS estimator is shown to
share the identical properties of the linearized error-state system as the
invariant EKF. However, the DES-VINS algorithm allows efficient and
consistent integration of long-tracked SLAM features (which are almost
always needed in practice), being 3× faster than the invariant VINS.
Extensive numerical studies and real-world experiments are presented to
compare with SOTA VINS estimators, providing valuable insights into
their performance and applicability.
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1 Introduction and Related Work

Visual-inertial navigation systems (VINS) fuse the high-rate inertial measure-
ments with the visual information to estimate 6 degrees-of-freedom (d.o.f) poses,
leading to their widespread applications across diverse fields [10, 12, 15, 30, 40,
41]. VINS is centered on a state estimation algorithm that aims to optimally
fuses sensor data. VINS estimators fall into two main categories: the filter-based
method, which linearizes the system once, and the optimization-based methods,
which solve a nonlinear least-squares (NLS) problem with relinearization [14].
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Beyond solving the estimation problem, problem design and formulation is also
crucial and widely studied in the literature, forming the key focus of our work.

Most VINS estimators use a global-centric formulation, directly estimating
states relative to a fixed global (world) frame [7, 33, 34, 39, 42, 43]. It typically
estimates the orientation (represented by SO(3) or unit quaternions), position,
velocity of the sensing platform, and environmental features in the global frame.
The standard linearized estimators based on this formulation may encounter the
inconsistency issue related to the system observability. Discrepancies between
sequential linearization points in the estimator can result in spurious information
gains along unobservable directions, hurting the performance [11, 16, 18, 25, 32,
35]. Alternatively, in a robocentric formulation, the moving body frame of the
sensor platform serves as the navigation frame of reference [8, 9], estimating the
relative pose between consecutive locations and the current pose with respect to
the initial (body) frame can be reconstructed by incrementally combining new
relative pose estimates [27, 28]. Recently, invariant-EKF-based VINS estimators
have seen a growing interest [3, 5, 23, 24, 26, 44], which are grounded on the Lie
group observer design theory [4] and assume the group affinity of the underlying
systems (which is often hard to hold in practice). This method models the state
on the manifold using a Matrix Lie group [2, 17] and improves performance, but
computation increases with more state variables (e.g., features). Interestingly,
both the invariant and robocentric formulations, despite requiring linearization
and being designed from different perspectives, have an unobservable subspace
independent of linearization points.

All the aforementioned standard VINS estimators, despite their unique for-
mulations and specific estimator characteristics, employ the same representation
of the error and state estimates – representing the same physical or mathemat-
ical quantities – so that they can be naturally aligned and corrected. However,
this is not the only choice. As shown in [48], one can represent the state vector
as keyframe poses and employ a B-spline function to model the error state, thus
effectively reducing the error state size and improving efficiency of pose esti-
mation. We thus formalize this idea that the error and state estimates do not
necessarily share the same representation; that is, the state correction operation
(x = x̂⊞ x̃) can be a distinct nonlinear function, whose form is determined by
the specific state and error state representations selected. Surprisingly, this per-
spective, though used implicitly in past approaches, has never been thoroughly
studied. Meanwhile, there is a notable lack of in-depth investigation and analysis
of the various design choices for estimators. The extensive literature and histor-
ical development of VINS algorithms, each designed with unique perspectives,
can challenge practitioners navigating this complex field.

Therefore, for the first time, we examine the prominent VINS algorithms
through a unified vision, analytically establishing equivalent connections be-
tween them and showcasing the capability to transit flexibly between design
choices. Reflecting on our discoveries, we introduce DES-VINS, which combines
the global-centric state representation with a novel error-state design. Interest-
ingly, DES-VINS achieves equality with the invariant formulation in accuracy
and consistency despite not being strictly bound by Lie group structures and
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system group affinity. However, it achieves speeds 3× faster and enables straight-
forward initialization, all thanks to the DES concept. In summary, the primary
contributions of our work include:

– We introduce the DES design methodology, which allows the state and er-
ror state to have different representations, broadening the potential design
spaces for estimators.

– For the first time, we analytically identify the transformations between the
SOTA VINS estimators. This unified vision brings together various aspects
into a cohesive understanding, providing deep and clear insight. Furthermore,
it allows leveraging the unique strengths of each formulation to enhance
estimation performance.

– We develop the DES-VINS algorithm, which employs a global-centric state
alongside a novel error state formulation. Interestingly, without relying on
the group-affine property or introducing extra constraints, the DES-VINS
error state is proven to be equivalent to the invariant formulation, which
ensures accuracy and consistency while achieving a threefold speed improve-
ment in integrating long-tracked SLAM features and enabling a simple sys-
tem initialization method. With extensive experiments to compare different
estimator designs, we provide valuable insights and discussions.

2 Decoupling Error and State Representations

In this section, we describe the key idea of the proposed decoupled-error-and-
state (DES) representation for linearized state estimator design. Given mea-
surements z, a least-squares formulation is often used, equivalent to maximum
likelihood estimation under mild assumptions [37]:

x̂ = argmin
x

||z− h(x)||2 (1)

Here, x is the state to be estimated, and h(·) is the typically nonlinear mea-
surement function. It is often transformed into a linear least-squares problem in
terms of the error state x̃:

x̃ = argmin
x̃

||r−Hx̃||2 (2)

where r = z − h(x̂) is the measurement residual, and H is the measurement
Jacobian, typically linearized around the current state estimate x̂. The state
estimate can thereafter be corrected iteratively as:

x̂⊕ = x̂⊞ x̃ (3)

In a standard estimator, the correction or update operation ⊞ maps the state
estimate and its corresponding error of the same representation (or parameteriza-
tion). For example, in the case of position p in the vector space, a simple addition
can be used: p̂⊕ = p̂ + p̃. For orientation, when the state is represented in the

SO(3) group, the state correction is typically expressed as R̂
⊕

= exp(−δθ)R̂,



4 Chen et al.

where δθ is the corresponding error angle. In the invariant formulation, where
states are modeled within a special Lie group, x ∈ SE2(3), the state correction
is x⊕ = exp(x̃)x̂, with exp(·) as the matrix exponential map [2, 17].

However, we advocate a general DES-estimator design methodology that the
state and error state are not restricted to share the same representations and
can be chosen with different representations of different mathematical quantities.
Consequently, the state correction ⊞ becomes a nonlinear mapping. This offers
flexibility in state estimator design and opens up new avenues for exploration. A
carefully crafted error-state formulation can result in the superior performance of
the corresponding linearized estimator, in terms of observability, efficiency, and
convergence. In the following, we will apply this DES methodology to VINS,
closely inspect different VINS formulations and identify their connections.

3 Unifying VINS Estimators

In VINS, the state vector x and error state x̃ can be summarized as:

x = (xI ,xb,xf ), x̃ = (x̃I , x̃b, x̃f ) (4)

where xI is the IMU state, typically including IMU orientation, position, and
velocity; xf denotes the features, which in general consists of 3D environmental
feature positions; Let xb represent the bias, with x̃b denoting the corresponding
error state. The navigation state is then defined as xn := (xI ,xf ). In the follow-
ing, we will carefully detail the modeling of the state and error states for each
estimator formulation. The global frame of reference is denoted by {G}, the lo-
cal IMU frame by {I}, and the camera frame by {C}. For simplicity, we assume
there is no spatial-temporal offset between the camera and IMU. In this section,
we explain the key concept in filtering-based VINS, while the proposed DES
methodology is versatile and suitable for any linearized estimators, including
those based on optimization.

3.1 System Models

IMU Model and Propagation A canonical six-axis IMU provides linear accelera-
tion and angular velocity measurements, am and ωm, modeled as:

am = a+ ba + na, ωm = ω + bg + ng (5)

where ng and na are zero-mean white Gaussian noise, bg and ba are the gy-

roscope and accelerometer biases, driven by noises (i.e., ḃg = nwg, ḃa = nwa).
Integrating inertial readings uk:k+1 within the time interval [tk, tk+1], we get:

xk+1 = f(xk,uk:k+1,wk), x̃k+1 ≃ Φk+1,kx̃k +Gkwk (6)

where wk is discretized noise vector, Φk+1,k is the state transition matrix and
Gk is the noise Jacobian matrix:

Φk+1,k =

⎡⎣ Φnn Φnb 09×3N

06×9 I6 06×3N

03N×9 Φfb I3N

⎤⎦ ,Gk =

⎡⎣Gnn 09×6

06 I6∆t
Gfn 03N×6

⎤⎦ (7)
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N denotes the number of features in the state and ∆t = tk+1 − tk is the time
difference. The subscript denotes the Jacobians corresponding to different states
(i.e., Φnb = ∂x̃n/∂x̃b ). Considering the variety in error state formulations, the
matrices Φk+1,k and Gk can exhibit distinct derivations. The standard EKF
propagation equation can then be leveraged to propagate the error covariance
[37].

Visual Measurement and Update The camera observes environmental features
from its poses. A point feature measurement at tk is expressed as:

zk = h(xk) + nk := Λ(Ckpfi) + nk (8)

where zk is the point feature measurement in pixel coordinates, Ckpfi is the i’th
feature position expressed in the camera frame. Λ(·) is the camera projection
model; nk ∼ N (0,Rk) is the white Gaussian noise; Linearizing Eq. (8) gives:

rk = zk − h(x̂k) ≃ Hkx̃k + nk (9)

where rk is the residual, Hk is the Jacobian. Once it passes the Mahalanobis
gating test, we can apply the EKF update equations to update the filter [37].

3.2 VINS Estimators

We next examine different estimator designs. For simplicity, we assume a single
feature and omit the subscript k in the derivations.

Global-Centric Formulation The global-centric formulation estimates the robot
state in the global frame of reference {G}. Following the MSCKF 2.0 [35], the
state and error state can be defined as:

xn :=
(︁
G
I R,GpI ,

GvI ,
Gpf

)︁
, x̃n =

[︂
θ̃
⊤ Gp̃⊤

I
Gṽ⊤

I
Gp̃⊤

f

]︂⊤
∈ R12 (10)

For orientation, we utilize the SO(3) perturbation model: G
I R = exp(−θ̃)GI R̂ ≃

(I − ⌊θ̃⌋)GI R̂, where ⌊·⌋ denotes the skew-symmetric matrix. Other states are
represented in vector space, allowing for additive error, i.e., GpI = Gp̂I +

Gp̃I .

Invariant Formulation The navigation state Xn is modeled in a special Lie
group. The biases, are still within the vector space (i.e., bg = b̂g + δbg ∈ R3).
This approach is now widely recognized as the imperfect invariant EKF (see
Table 2 in [20] for a summary). We will now focus on the derivation for the
navigation state Xn and its error state δxn:

Xn:=

[︃
G
I R

GpI
GvI

Gpf

03 I3

]︃
∈ SE3(3), δxn :=

[︁
δθ⊤ δp⊤

I δv⊤
I δp⊤

f

]︁⊤ ∈ R12 (11)

Defining X̂n as the state estimate we adopt the right invariant perturbation as:

Xn = exp(δxn)X̂n (12)
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=

[︃
exp(−δθ) Jl(−δθ)δpI Jl(−δθ)δv Jl(−δθ)δpf

03 I3

]︃ [︃
G
I R̂

Gp̂I
Gv̂I

Gp̂f

03 I3

]︃
(13)

where Jl(·) denotes the left Jacobian. By expanding the matrix, we derive per-
turbations for each state variable. This allows us to establish the relationship
between the error state x̃ for the global-centric formulation and δx for the in-
variant formulation. For the orientation and position, we have:

G
I R = exp(−θ̃)GI R̂ = exp(−δθ)GI R̂ ⇒ θ̃ = δθ (14)
GpI = Gp̂I +

Gp̃I = exp(−δθ)Gp̂I + Jl(−δθ)δpI ⇒ Gp̃I ≃ ⌊Gp̂I⌋δθ + δpI

where we have assumed Jl(−δθ) ≃ I3 due to the generally small magnitude of
the rotation error δθ. Similarly, we can derive the velocity and feature errors:

GṽI ≃ ⌊Gv̂I⌋δθ + δvI , Gp̃f ≃ ⌊Gp̂f⌋δθ + δpf (15)

Clearly, we can draw the connection between the global-centric (x̃n) and invari-
ant (δxn) error states:⎡⎢⎢⎣

θ̃
Gp̃I
GṽI
Gp̃f

⎤⎥⎥⎦ ≃

⎡⎢⎢⎣
I3 03 03 03

⌊Gp̂I⌋ I3 03 03

⌊Gv̂I⌋ 03 I3 03

⌊Gp̂f⌋ 03 03 I3

⎤⎥⎥⎦
⎡⎢⎢⎣
δθ
δpI

δvI

δpf

⎤⎥⎥⎦ ⇔ x̃n ≃ Aδxn (16)

Robocentric Formulation The robocentric VINS is reformulated with respect
to the local IMU frame {I} [8, 9, 27]. It requires some special designs such as
incorporating gravity into the state vector and a composition step for shifting
the robocentric frames [27], which are beyond this paper’s scope. Instead, we
focus on the minimal state variables:

x′
n :=

(︁
I
GR, IpG,

IvG,
Ipf

)︁
, x̃′

n =
[︂
θ̃

′⊤ I p̃⊤
G

I ṽ⊤
G

I p̃⊤
f

]︂⊤
∈ R12 (17)

Similarly, for the orientation error state we have: I
GR = exp(−θ̃

′
)IGR̂ ≃ (I −

⌊θ̃
′
⌋)IGR̂. The remaining states allow for simple additive error. We then look

into the error state between the global-centric (x̃n) and robocentric (x̃′
n):

I
GR = G

I R
⊤ ⇒ θ̃ = −I

GR
⊤θ̃

′
(18)

GpI = −I
GR

⊤IpG ⇒ Gp̃I ≃ −⌊Gp̂I⌋IGR̂
⊤
θ̃
′
− I

GR̂
⊤I p̃G

GvI = −I
GR

⊤IvG ⇒ GṽI ≃ −⌊Gv̂I⌋IGR̂
⊤
θ̃
′
− I

GR̂
⊤I ṽG

Gpf = I
GR

⊤ (︁
Ipf − IpG

)︁
⇒ Gp̃f ≃ −⌊Gp̂f⌋IGR̂

⊤
θ̃
′
+ I

GR̂
⊤I p̃f − I

GR̂
⊤I p̃G

We have left out the detailed derivations in this paper. For those, please see our
supplementary material [13]. To put in the compact matrix form, we have:⎡⎢⎢⎣

θ̃
Gp̃I
GṽI
Gp̃f

⎤⎥⎥⎦≃
⎡⎢⎢⎢⎢⎣

−I
GR̂

⊤
03 03 03

−⌊Gp̂I⌋IGR̂
⊤
−I

GR̂
⊤

03 03

−⌊Gv̂I⌋IGR̂
⊤

03 −I
GR̂

⊤
03

−⌊Gp̂f⌋IGR̂
⊤
−I

GR̂
⊤

03
I
GR̂

⊤

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

θ̃
′

I p̃G
I ṽG
I p̃f

⎤⎥⎥⎦ ⇔ x̃n ≃ Bx̃′
n (19)
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3.3 Remarks: The Unified Persective

For the first time ever, we have analytically shown the transformations between
the error states of global-centric (x̃n), invariant (δxn) and robocentric (x̃′

n),
demystifying the unknown relationship between the popular VINS estimators:

x̃n = Aδxn = Bx̃′
n , δxn = Dx̃′

n (20)

where A are shown in Eq. (16) and B can be found in Eq. (19), while D involves
only rotation matrix blocks:

D = A−1B = −I
GR̂

⊤

⎡⎢⎢⎣
I3 03 03 03

03 I3 03 03

03 03 I3 03

03 I3 03 −I3

⎤⎥⎥⎦ (21)

Building upon these findings, we can also formulate novel equations for linearized
IMU propagation and visual updates, tailored to each formulation. Assume the
propagation and update equations with global-centric formulation are expressed
as Eq. (6) and (9), we can reframe the linearized propagation and update equa-
tions accordingly. To illustrate this process, we present the invariant formulation
as a uniform example. As the error state for invariant and global-centric has the
relationship x̃ = Aδx, substituting into Eq.(6) and Eq.(9) yields:

δxk+1 ≃ A−1
k+1Φk+1,kAkδxk +A−1

k+1Gkwk (22)

= δΦk+1,kδxk + δGkwk (23)

δrk ≃ HkAkδxk + nk = δHkδxk + nk (24)

The above derivations are applicable to any error-state formulation, offer a uni-
fied perspective across different design choices, providing a deep and clear un-
derstanding of VINS. This sheds light on a novel estimator design choice and
unlocks the potential to flexibly “transfer” between different formulations for
specific uses. We will demonstrate their practical use in the following.

4 DES-VINS Estimator Design

We now introduce an alternative consistent estimator design, termed DES-VINS.
In our design choice, we adopt the global-centric state, Eq. (10), as it directly
represents the physical quantities of the navigation system and offers a straight-
forward interpretation. Thanks to the DES concept, our selection of the error
state is guided by two key considerations: (i) Addressing the primary source of
nonlinearity in the system, which comes from orientation. By lifting orientation
into the error state, we aim to mitigate issues related to linearization and en-
sure the observability of the linearized error-state system. (ii) Given the state
estimate, we aim to design the error state to facilitate linear update operations
with respect to itself to ensure consistent observability between the state and
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error state. In line with Eq. (4), the complete state and error state are defined
as:

x := (xn,xb) , x̃ := (x̃∗
n, x̃

∗
b) (25)

xn :=
(︁
G
I R,GpI ,

GvI ,
Gpf

)︁
, xb := (bg,ba) (26)

x̃∗
n :=

[︂
θ̃
∗⊤

p̃∗⊤

I ṽ∗⊤
p̃∗⊤

f

]︂⊤
∈ R12 , x̃∗

b :=
[︂
b̃
∗⊤

g b̃
∗⊤

a

]︂⊤
∈ R6 (27)

where the error state x̃∗
n is carefully designed as:

θ̃
∗
= −I

GR̂
⊤
δθ̃

′
, p̃∗

I = −I
GR̂

⊤I p̃G , ṽ∗ = −I
GR̂

⊤I ṽG (28)

p̃∗
f = I

GR̂
⊤I p̃G→f = I

GR̂
⊤
(I p̃f − I p̃G) (29)

Note that the error state formulation for the IMU presented here can be viewed

as multiplying the robocentric error state, x̃′, with a rotation matrix, −I
GR̂

⊤
. For

the feature, this can be viewed as the error state of the global feature represented

in the IMU frame, multiplied by I
GR̂

⊤
. The correction of the state estimate, uti-

lizing our proposed specialized error state and state formulation, clearly would
become a nonlinear operation [see Eq. (3)]. Specifically, the orientation and po-
sition are corrected as:

G
I R̂

⊕
= exp(−θ̃

∗
)GI R̂ , Gp̂⊕

I ≃ Gp̂I + ⌊Gp̂I⌋θ̃
∗
+ p̃∗

I (30)

For biases, simple addition is employed (i.e., bg := b̂g + b̃
∗
g ). Velocity and fea-

ture state corrections can be similarly derived, as detailed in the supplementary
material [13]. For the simplicity and consistency of the presentation, in what fol-
lows, we shift our attention to the navigation state. Substituting the above error
state, we also identify the following transformation between the global-centric
and the DES-VINS formulations:

θ̃ = −I
GR̂

⊤
δθ̃

′
⇒ θ̃ = θ̃

∗
(31)

Gp̃I ≃ −⌊Gp̂I⌋IGR̂
⊤
θ̃
′
− I

GR̂
⊤I p̃G ⇒ Gp̃I ≃ ⌊Gp̂I⌋θ̃

∗
+ p̃∗

I

GṽI ≃ −⌊Gv̂I⌋IGR̂
⊤
θ̃
′
− I

GR̂
⊤I ṽG ⇒ GṽI ≃ ⌊Gv̂I⌋θ̃

∗
+ ṽ∗

Gp̃f ≃ −⌊Gp̂f⌋IGR̂
⊤
θ̃
′
+ I

GR̂
⊤I p̃f − I

GR̂
⊤I p̃G ⇒ Gp̃f ≃ ⌊Gp̂f⌋θ̃

∗
+ p̃∗

f

The compact matrix form is given by:⎡⎢⎢⎣
θ̃

Gp̃I
GṽI
Gp̃f

⎤⎥⎥⎦ ≃

⎡⎢⎢⎣
I3 03 03 03

⌊Gp̂I⌋ I3 03 03

⌊Gv̂I⌋ 03 I3 03

⌊Gp̂f⌋ 03 03 I3

⎤⎥⎥⎦
⎡⎢⎢⎣
θ̃
∗

p̃∗
I

ṽ∗

p̃∗
f

⎤⎥⎥⎦ ⇔ x̃n ≃ Cx̃∗
n (32)

Remarkably, the matrix C in (32) is identical to matrix A in (16), resulting in:

x̃∗
n ≃ δxn (33)
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This result is much intriguing, by realizing that the proposed error state x̃∗

is not particularly designed in SE2(3), without concerning the group affinity
constraints, but reaches an equivalent invariant formulation [see Eq. (11)], shar-
ing the same propagation and update Jacobian and thus preserving the same
linearized system properties (up to same linearization).

4.1 Observability and Consistency

System observability is fundamental to state estimation [29, 36]. VINS is par-
tially observable arising from the nature of the measurements – both the IMU
and camera provide only relative information about the sensing platform [25, 32].
It has been discussed that the global-centric formulation, makes the global ori-
entation appear to be observable and thus reduces the nullspace to only three
d.o.f dimension. This causes the filter to gain extra information, leading to in-
consistency, and inaccuracy in estimation results1.

As such, the observability-constrained (OC)-estimator design has emerged,
with the First-Estimates Jacobian (FEJ) methodology [11, 12, 16, 25, 31, 32]
being a notable approach, which ensures observability by using the first state es-
timate for evaluating Jacobians across all time periods and significantly improv-
ing VINS accuracy and consistency. In contrast, the invariant and robocentric
have the unobservable subspace independent of the state vector. Consequently,
these estimators inherently avoid inconsistencies arising from erroneous informa-
tion affecting the system’s unobservable directions due to linearization. Likewise,
DES-VINS shares the same state translation and measurement Jacobian matrix
as the invariant formulation, thereby enjoying the same observability properties.
For more information and derivations, see our supplementary materials [13].

This opens a compelling discussion and prompts thoughtful considerations
in estimator design. While the underlying nonlinear system remains the same,
the choice of error state representation can significantly influence the properties
of the linearized estimator. These variations can have a substantial impact on
estimation performance and should be carefully considered in estimator design.

4.2 Efficient Feature Integration

There are two methods to balance efficiency and accuracy in VINS with many
features. The first method marginalizes features from the state vector using the
MSCKF nullspace projection [39], which is efficient but loses information by
treating long-track features as multiple short ones. The second method selec-
tively incorporates long-track features into the state vector as SLAM features,
improving accuracy by maintaining correlation across sliding windows.

For the global-centric formulation, a feature exhibiting zero dynamics (i.e.,
Gṗf = 0) can be trivially incorporated into the covariance, as it remains un-
correlated with other state variables (i.e., Φfb = 0 in Eq. (7)). However, in the
invariant formulation, these features are correlated with other state variables

1An estimator is consistent when its errors are zero-mean (unbiased) and the co-
variance matrix is equal to that reported by the estimator (see [1], Section 5.4).
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during propagation (i.e., Φfb ̸= 0). As discussed in [45], involving l features in
global-centric propagation requires O(l) computation, but O(l2) in the invariant
formulation, considerably slow down the system in multi-step propagation with
high IMU frequency. A straightforward approach is to decouple the feature from
Lie group structure, removing the correlation but requiring FEJ the features [45].

Thanks to the unified perspective we have established and the connections
derived [see Section 3], we propose a novel method leverages the benefits of the
global-centric formulation for efficient propagation while preserving the consis-
tency property of the DES (invariant) formulation without the need to FEJ
the features. Given the covariance invPk of the DES (invariant) formulation,
we first “transfer (propagate)” the covariance to the global-centric formulation,
gcPk [see Eq. (16)]:

gcPk = Ak
invPkA

⊤
k (34)

Since the features are uncorrelated with other states for the global-centric for-
mulation, covariance propagation can be computed efficiently:

gcPk+1 = Φk+1,k
gcPkΦ

⊤
k+1,k +GkQkG

⊤
k (35)

We then “transfer (recover)” the desired covariance through:

invPk+1 = A−1
k+1

gcPk+1A
−⊤
k+1 (36)

This method, flexible “transition” between different formulations, allows for effi-
cient and consistent incorporation of features by leveraging the benefits of both
global-centric and DES (invariant) formulations, will be validated in Section 5.1.

Note that the proposed method still requires O(l2) complexity but avoids
extra computation in multi-step propagation, maintaining sparsity in feature
propagation to minimize overhead. Incorporating features into the state requires
O(l3) computations during updates, making the O(l2) overhead in propagation
a worthwhile trade-off. This eliminates the need for OC design, which might
introduce unmodeled errors [16].

Fig. 1: Visualization of initial 2D position distributions in Euclidean space using
invariant (RI, lighter color) and global-centric (GC, darker color) filters. Different
colors represent different x positions. The left figure shows RI without covariance
propagation, and the right shows RI with propagation (RI-P).
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4.3 Estimator Initialization

Successful VINS initialization requires accurate initial state and covariance, via
static initialization [21], dynamic initialization [19, 38], or using a pre-built
map [22, 46]. Inappropriate initial covariance can cause system drift, a detail
that might be overlooked in the literature. In the ensuing discussion, we assume
initialization in a map with the initial state estimate x̂0 and covariance, gcP0,
for the global-centric formulation as:

x0 ∼ N (x̂0,
gcP0), x̃0 =

[︂
θ̃
⊤
0

Gp̃⊤
I0

Gṽ⊤
I0

]︂⊤
(37)

gcP0 = E[x̃0x̃
⊤
0 ] = diag(gcPθ0

, gcPp0
, gcPv0

) (38)

where E[·] is the expected value, gcPθ0 ,
gcPp0 and gcPv0 denote the initial co-

variance for orientation, position and velocity, respectively. In the global-centric
formulation, the initial state and covariance are easily interpreted. For instance,
setting gcPp0

to 0.2 × 0.2 × I3 indicates that the initial position error in each
direction follows a Gaussian distribution with a 0.2-meter standard deviation.
In the invariant formulation, the initial state and covariance are specified as:

x0 ∼ N (X̂0,
invP0) , δx0 =

[︁
δθ⊤

0 δp⊤
I0

δv⊤
I0

]︁⊤
invP0 = E[δx0δx

⊤
0 ] = diag(invPθ0

, invPp0
, invPv0

)

However, in the Lie group representation, the same initial covariance does not
equate to the same physical uncertainty in Euclidean space. This issue also exists
for the DES-VINS. To visualize, in Figure 1, we first set the same initial prior
covariance for both global-centric and invariant (i.e., gcP0 = invP0 = 0.1 × I6
). The initial orientation is set to be identity, while we vary the initial position
on the x-axis starting from origin [0, 0, 0]⊤ to [20, 0, 0]⊤. We then plot the 2D
position sample distributions corresponding to different error states, x̃0 and δx0.
Clearly, when the position is not at the origin, the DES (invariant) will yield a
larger sample distribution compared with the global-centric as the distance to
the origin increases, which does not correctly depict the initial uncertainty. To
address this issue, we establish the relationship between the initial error state
covariances as:

gcP0 = E[x̃0x̃
⊤
0 ] = E[(A0δx0)(A0δx0)

⊤] = A0
invP0A

⊤
0

⇒ invP0 = A−1
0

gcP0A
−⊤
0 (39)

Following this propagation, the initial distributions will align closely with the
global-centric representation (Figure 1, right). Drawing on these insights, to eas-
ily initialize the system with an invariant formulation on a pre-built map, start
by setting the covariance, gcP0, using the global-centric formulation for easy
quantification of initial state estimate uncertainty. Then, apply covariance prop-
agation [Eq. (39)] to derive the initial covariance in the invariant formulation.
Further discussions are in Section 5.1 .
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5 Performance Evaluation

5.1 Numerical Studies

In the numerical study, we evaluate different estimators:

– Global-centric (GC): We leverage OpenVINS [21], a SOTAMSCKF VINS,
with and without the FEJ method, denoted as GC-fej and GC-std.

– Decoupled right-invariant (DRI): In line with [45], we implement the
right invariant (RI) error state formulation for VINS on top of OpenVINS
with decoupled features, denoted as DRI. DRI-fej applies FEJ to SLAM
features, while DRI-std does not.

– DES-VINS: Our method with decoupled state and error state formulations,
which has been proven equivalent to the invariant error state formulations.
We consistently incorporate SLAM features as discussed in Section 4.2.

To clarify, the term “decouple” holds a dual meaning in our context. Follow-
ing [45], in the decoupled-right invariant (DRI), decouple denotes the separation
of SLAM features from the Lie group structure. Meanwhile, in DES-VINS, it
means the independent and separate handling of error and state representations.
Although DES-VINS is mathematically equivalent to the invariant formulation,
we aim to conduct a comprehensive numerical study of different estimators un-
der extreme conditions, such as 8-pixel noise, to fully assess their strengths and
weaknesses. These studies spark interesting discussions beyond the results them-
selves, as detailed in Section 6 . We also evaluate efficiency and estimator ini-
tialization to highlight the importance and utility of the proposed DES design
concept. We didn’t consider the robocentric formulation due to its complexity
and scope limitations, but it is an interesting possibility for future investigation.

We generate realistic visual-bearing and inertial measurements, with simu-
lation parameters detailed in Table 1. The simulated trajectory can be found
in the supplementary material [13]. Our reported metrics include Absolute Tra-
jectory Error (ATE), Normalized Estimation Error Squared (NEES), and Av-
erage NEES (ANEES) [1, 47], where the ANEES is calculated as: ANEES :=
1

6M

∑︁M
i=1[(x

i
gt ⊟ x̂i)⊤P−1(xi

gt ⊟ x̂i)], xgt denotes the ground truth. For the RI,

the estimation error is computed as: xgt⊟ x̂ := log (XgtX̂
−1

), where X ∈ SE(3)
includes orientation and position. For the GC formulation, the estimation error

is defined as: xgt ⊟ x̂ = [log (RgtR̂
⊤
)
⊤

(pgt − p̂)⊤]⊤. For an estimator to be
considered consistent, the magnitude of NEES should align with the 3 d.o.f. for
orientation and position and its ANEES should be 1.

Sensitivity to Noise We challenge the estimators with increased inertial and
camera noise, but due to space limits, only results for camera noise are pre-
sented, shown in Figure 2; additional results are in our supplementary mate-
rial [13]. Clearly, when the measurement noise is small, all formulations exhibit
comparable performance. However, as noise levels increase, leading to a decline in
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estimation accuracy due to accumulative errors, the distinctions among the for-
mulations become more apparent. Overall, formulations with consistency prop-
erties (GC-fej, DRI-fej, and DES-VINS) outperform those lacking consistency
(GC-std and DRI-std), as demonstrated by lower ATE values and more ideal
ANEES. Remarkably, FEJ-based estimation methods maintain superior perfor-
mance over non-consistent approaches, even with 8-pixel measurement noise and
potential inaccuracies in initial state estimates, such as triangulated feature po-
sitions. Among all, DES-VINS demonstrates the best performance, thanks to its
capacity to maintain system observability without modifying the Jacobian.

Fig. 2: Estimation ATE (left, middle) and ANEES (right) under varying camera
measurement noise with different estimator formulations averaged from 200 runs.
An ideal ANEES for a consistent estimator is 1. The ANEES value over 10 are
truncated for clarity. The ATE figures only display values for the worst (blue:
GC-std) and the best performance (green: DES-VINS).

Fig. 3: Comparative estimation ATE (left, middle) and runtime (right) for dif-
ferent estimator formulations with different numbers of SLAM features based on
200 runs. ATE results omit RI-naive due to the same performance as DES-VINS;
runtime shows only FEJ for each formulation, as they are similar to standard
versions. The ATE figures only display values for the worst (blue: GC-std) and
the best performance (green: DES-VINS), while the runtime plot shows values
for the slowest (purple: RI-naive) and the proposed one (green: DES-VINS).

Efficiency We next examine the performance impact of incorporating SLAM
features into the state with particular attention to efficiency, as detailed in Fig-
ure 3. By default, our simulations include 200 features (see Table 1). We report
system performance using a range of 0 to 80 SLAM features, while processing all
remaining features as MSCKF features. In these experiments, we set the camera
measurement noise to 3 pixels to accentuate the performance differences. Gener-
ally, estimators that maintain consistency yield better results. Furthermore, the
increase in SLAM features enhances estimation accuracy, showing their benefit
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to the system. More importantly, the timing is reported in the right subfigure
of Figure 3. As discussed in Section 4.2, naively incorporating SLAM features
into the RI formulation significantly increases computational load. We include
‘RI-naive’, which propagate with SLAM features directly and ‘DES-VINS’ uses
our proposed method for efficient propagation (Section 4.2). As expected, Naive
incorporation results in a substantial increase in computation time, becoming ap-
proximately 2.7× slower with 60 SLAM features, and 4× slower with 80 SLAM
features, compared to DES-VINS. On the other hand, in comparison to the
SOTA invariant method (i.e., DRI-fej), the proposed DES-VINS is theoretically
more rigorous without relying on the FEJ approximation, all while maintaining
minimal efficiency costs, achieving 12% accuracy improvement with only a 6% in
computational overhead [see supplementary material for complete results [13]].

Table 1: Simulation parameters
Parameter Value Parameter Value

Gyro. White Noise 1.6968e-4 Gyro. Rand. Walk 1.9393e-5
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3
Cam Freq. (Hz) 10 IMU Freq. (Hz) 400
Num. Clones 11 Tracked Feat. 200

Table 2: Estimation performance
Pos. (m) Estimator Cov Prop? ATE(deg/m) NEES(3)

0
GC ✗ 0.474 / 0.163 2.412 / 1.501
RI ✗ 0.471 / 0.156 2.393 / 1.344

1000
GC ✗ 0.474 / 0.163 2.410 / 1.499
RI ✗ 0.941 / 2.665 5.143 / 12.525
RI ✓ 0.472 / 0.155 2.392 / 1.343

Initialization We examined the impact of initial covariances in two scenarios:
starting at the origin, common in static initialization, and with the initial posi-
tion shifted by 1 km in each axis, typical for systems initializing in a pre-built
map. The state estimates are initialized using ground truth data. The results are
reported in Table 2, where “Cov Prop” denotes if the extra covariance propa-
gation is applied [See Eq.(39)]. As expected, the estimation performance of GC
will not be affected by the initial position since its error state can be correctly
represented by the initial covariance. For invariant formulation (RI), initializing
with a large position and naively setting the same small initial covariance - due
to ground truth system initialization - is shown to be inaccurate and inconsis-
tent with large ATE and NEES values. This issue can be resolved by applying
covariance propagation, Eq.(39), to establish an appropriate initial covariance.

5.2 Real-World Experiments

Table 3: Absolute trajectory error (ATE) for each formulation in degrees/cm.
MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203

GC-std [21] 1.92 / 10.0 1.32 / 15.1 1.80 / 22.1 0.99 / 19.8 0.92 / 34.3 0.79 / 6.3 1.87 / 6.8 2.47 / 8.7 1.00 / 10.9 1.88 / 8.1 1.11 / 23.3
DRI-std [45] 1.73 / 10.0 1.22 / 14.3 1.69 / 21.7 1.11 / 20.3 1.00 / 32.5 0.81 / 5.5 1.91 / 6.7 2.40 / 8.4 0.86 / 11.1 1.79 / 8.2 1.18 / 21.6

GC-fej [21] 1.43 / 9.6 0.89 / 14.0 1.61 / 20.0 1.04 / 15.0 0.96 / 26.8 0.53 / 4.8 1.83 / 6.5 1.91 / 6.6 0.75 / 14.0 1.65 / 7.6 1.41 / 22.7
DRI-fej [45] 1.50 / 9.8 0.73 / 12.1 1.68 / 20.5 1.02 / 16.6 0.76 / 31.2 0.59 / 4.9 1.81 / 6.5 1.99 / 6.0 0.74 / 10.8 1.60 / 8.0 1.45 / 22.4
DES-VINS 1.56 / 9.2 0.75 / 12.8 1.74 / 20.9 1.06 / 15.5 0.71 / 27.7 0.62 / 5.4 1.76 / 6.4 1.99 / 6.2 0.75 / 10.7 1.62 / 7.6 1.41 / 23.3

We further evaluate and compare different estimator formulations with real-
world Euroc Mav dataset [6], presented in Table 3. In our experiments, we
maintained 11 clones and a maximum of 50 SLAM features in the state. For
other tracked features, we conducted MSCKF updates, where the max num-
ber of MSCKF updates is 40. The results show that estimators designed with
consistency property outperform their inconsistent ones as evidenced by lower
ATE values. Along with the simulation results, this underscores the critical im-
portance of maintaining system consistency. However, we also observed that it
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occurs to be more sensitive to outliers, which is currently rejected by the Maha-
lanobis gating test, where differences in linearization points can make an impact.

6 Beyond the Results: A Dissuasion

6.1 Ensuring Correct Observability Properties

First of all, both the simulation and experimental results underscore the signif-
icance of assuring estimator consistency (in terms of NEES), as only an estima-
tor that is consistent and can provide trustworthy results in practice. Thanks
to the DES concept and established connections between estimators, DES-VINS
efficiently and consistently integrates SLAM features with theoretical rigor. Nu-
merical studies indicate that DES-VINS offers superior accuracy, particularly
in high-noise environments, due to its ability to maintain observability without
modifying the measurement Jacobian. However, in real-world experiments, all
the consistent estimator design choices demonstrated comparable and similar
performance. This similar performance likely arises from negligible differences
between the first and current estimates in environments with low measurement
noise, where, without iterative updates, the first estimate is not inherently worse.

6.2 Understanding Error States

For real systems, understanding and thus interpreting error states of an estimator
is of practical importance but could be challenging in some formulations (e.g.,
invariant). For example, when representing error states and thus uncertainty for
position and velocity, it is more natural to understand them in R3. We have
shown that careful initialization with proper initial covariance is crucial and
should be considered when evaluating estimators. In our numerical studies, we
calculate NEES for the invariant formulation within the SE(3) group. However,
for practical applications like real-time obstacle avoidance or data association, it
is often more practical to use the covariance from the global-centric formulation.
This can be easily achieved through covariance propagation, as explained in
Section 4.3 , thanks to the flexible transformation between formulations.

6.3 Dirty Laundry

Fig. 4: Comparison of ||Q||F between global-centric (GC) and invariant (RI)
formulations over time.

No free lunch. While the invariant formulation does not have an issue of
system observability related to linearization, we did find some potential caveat
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about the noise covariance (which is not revealed yet in our numerical studies
though). Specifically, a notable distinction arises in the noise Jacobian for the
invariant formulation [i.e., δG in Eq. (23)] and for the global-centric formulation
[i.e., G in Eq. (6)]. In the δG, the global state estimates (GpI) are included,
whereas in G, all states are relative states (i.e., ∆p = GpIk+1

− GpIk). Please
refer to our supplementary material [13] for the analytical noise Jacobians. This
results in significant differences in the magnitude of the noise Jacobian and
thus the propagated noise covariance, Qk+1 = δGkQkδG

⊤
k , especially for large-

scale outdoor scenarios where the positions may grow unbound. As depicted
in Figure 4, where we utilized the same trajectory as the one used for testing
initialization with a shifted initial position, it is evident that the Frobenius norm
||Q||F for the invariant is significantly larger than that for the global-centric. This
result however suggests that the IMU measurements may have much greater
uncertainty in the invariant formulation than the global-centric. Also, the global
state in the invariant noise Jacobian (i.e., GpI) might have larger errors than the
relative state (i.e., ∆p) for the global-centric. Although this potential caveat has
not shown any symptom yet in our finite studies, we will investigate it further.

It is important to note that linear observability analysis concerns the corre-
sponding deterministic linearized system only, without considering the stochastic
noise. If choosing a different representation of errors from the states of the un-
derlying physical systems, it remains unclear that proper observability of the
linearized error-state system can ensure proper estimability of the states, which
we will study further in the future.

7 Conclusion and Future Work

In this paper, we have formalized a general DES estimator design methodology,
which does not require the state and error state to share the same representation
and instead can be decoupled from each other. With this methodology, we have
unified different popular VINS estimators including the global/robo-centric and
invariant formulations by analytically deriving transformations between them
and showing the capability to flexibly transfer different formulations. This offers
a fresh perspective in estimator design, allowing to harness distinct advantages
from various formulations tailored to specific purposes, thereby enhancing overall
performance. With the application to VINS, we have developed a new DES-
VINS estimator, utilizing global-centric state vectors and a novel error state
formulation. Although fundamentally different, it has been proven equivalent to
the invariant formulation, even without adhering to the design constraints of
group-affine properties. Thanks to the unified perspective, DES-VINS efficiently
integrates long-tracked SLAM features — achieving speeds 3× faster compared
to the invariant formulation — while ensuring consistency. Additionally, we show
an easy method for proper system initialization. Extensive numerical studies and
real-world experiments are presented to evaluate the estimator performances
with different formulations sparking fruitful discussions. Looking forward, we
see great promise in systematically developing formulations tailored to specific
requirements, a strategy applicable to all nonlinear estimators.
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